Population, Community and Ecosystem Ecology
Important Notice
This course is not active. Please contact Department Chair for more information.
Overview
1. Methods to study populations, communities and ecosystems
a. Field methods – advantages and disadvantages
b. Laboratory methods – advantages and disadvantages
c. Models – assumptions, accuracy, reliability and utility/simplicity
2. Determinants of population abundance and spatial distribution
a. Review definition of a population and the questions ecologists ask about populations
b. Bridge from organismal ecology - life history theory, life tables, survivorship, age vs. stage-based, using a Leslie matrix to model population dynamics, introduction to Lefkovitz matrix
c. Single-species population dynamics
i. density-independent growth – closed vs open populations, estimates of r, geometric vs exponential growth, examples of density-independent growth
ii. density-dependent growth – one-species density dependence (K, intraspecific competition, social behaviour)
d. Metapopulation theory: factors that determine population persistence despite locally poor environments
e. Population regulation
i. Fundamental niche
ii. Species interactions and population growth
(a) Antagonistic interactions (e.g., predator-prey, parasite-host, plant-herbivore): Lotka-Volterra equations or Nicholson-Bailey model, as appropriate; functional response; population cycles
(b) Competition – competition isoclines, outcomes of competitive interactions, competitive exclusion
(c) Costs of interspecific interactions
iii. Trophic cascades
f. Stochasticity and Population Viability Analyses, Allee effect, population size and extinction risk
3. Factors that influence community structure
a. Review definition of a community and the questions ecologists ask about communities
b. Bridge from organismal ecology and population ecology - environmental tolerances and competition, fundamental niche vs realized niche, zonation
c. Trophic webs, consumer-resource interactions, top-down vs bottom-up
d. Competition – niche partitioning, character displacement, consequences for community structure
e. Mutualisms – obligatory, coevolution, consequences for community structure
f. Effect of spatial scale on community structure, island biogeography, landscape ecology
g. Determinants of biodiversity at different spatial scales
h. Changes in community structure over time, succession and disturbance, intermediate disturbance hypothesis
i. Factors relating to community resistance and resilience
4. Factors that influence ecosystem function
a. Review definition of an ecosystem and the questions ecologists ask about ecosystems
b. Energy flow within ecosystems – ecological efficiency
c. Nutrient cycling within ecosystems – differences between terrestrial and aquatic ecosystems
d. Primary productivity – factors in terrestrial and aquatic ecosystems
e. Bridge from population and community ecology – gain or loss of individual organisms and effect on nutrient and energy cycling, importance of biodiversity to primary productivity
This course involves three hours of lectures and one hour of tutorial per week, integrating case studies, discussion of primary literature and data analysis and interpretation.
Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on the following:
Evaluation | Marks |
Tutorial and/or case study written reports | 15-30 |
Participation in online, class or group discussion | 10-20 |
Midterm examination | 15-25 |
Final examination | 20-35 |
TOTAL | 100 |
By the end of the course the successful student will be able to:
-
Identify and evaluate the validity of ecological theories that explain the distribution and abundance of species and the functioning of communities and ecosystems.
-
Identify the mechanisms that functionally bridge ecological theory from organisms, to populations, to communities, and to ecosystems.
-
Use inferential statistical analyses to evaluate hypotheses about population dynamics, community assembly and ecosystem function.
-
Evaluate how ecological processes at one level of organization influence processes at other levels of organization.
-
Utilize quantitative methods to project the dynamics of populations, communities and ecosystems.
-
Work collaboratively and apply ecological science to formulate solutions to specific conservation and management problems.
-
Communicate the results of research findings in written documents and to peers in online and in-person discussions.
Students should consult the Douglas College Bookstore for required textbooks and materials.
Requisites
Course Guidelines
Course Guidelines for previous years are viewable by selecting the version desired. If you took this course and do not see a listing for the starting semester / year of the course, consider the previous version as the applicable version.
Course Transfers
These are for current course guidelines only. For a full list of archived courses please see https://www.bctransferguide.ca
Institution | Transfer details for BIOL 3306 |
---|---|
Vancouver Community College (VCC) | No credit |