Douglas College wordmark
Facebook logo Twitter logo Instagram logo Snapchat logo YouTube logo Wordpress logo

Registration for the Fall 2019 semester begins June 25.  Watch your email for more details.

back to search

Practical Physics

Course Code: PHYS 1104
Faculty: Science & Technology
Department: Physics
Credits: 5.0
Semester: 15 weeks
Learning Format: Lecture, Lab, Partially Online
Typically Offered: Fall, Summer
course overview

This course is intended for students who have not taken Physics previously or who have taken some secondary school Physics and want a review. The areas to be covered are mechanics (one and two dimensional motions; vectors; rotational motion; simple machines; work, energy, and power; momentum; equilibrium; Hooke’s law; collisions; circular motion; hydrostatics), heat (thermometry; heat transfer; thermal properties of matter), and electricity (electrostatics; direct current concepts and basic circuits).

Course Content

Mechanics

  • physical quantities and SI units
  • vectors versus scalars
  • vector addition
  • velocity and acceleration
  • uniformly accelerated motion
  • Newton’s laws of motion
  • gravitation
  • friction
  • first condition for equilibrium
  • torque and lever arm
  • second condition for equilibrium
  • simple machines
  • work, energy and power
  • conservation of energy
  • momentum and impulse
  • centripetal force and acceleration
  • rotational motion
  • density
  • pressure
  • Archimedes’ principle

Heat

  • temperature and thermometers
  • thermal energy and heat capacity
  • latent heats and phase changes
  • heat transfer mechanisms

Electricity

  • electric charge
  • Coulomb’s Law
  • electric field
  • potential difference
  • current
  • resistance and Ohm’s Law
  • electric power
  • simple circuit analysis

Methods of Instruction

Classroom time will be divided between the presentation and discussion of basic concepts on the one hand and the application of these concepts in problem solving (working through examples and problems) on the other. Some of the assignments may be on on-line. The laboratory program will involve weekly, three hour sessions during which students will perform a set number of experiments. This course involves some group work.

Means of Assessment

  1. final examination – minimum of 30% / maximum of 40%
  2. at least one test administered during the semester – minimum of 20% / maximum of 30%
  3. submitted laboratory reports – 20%
  4. quizzes, assignments – maximum of 20%   Some assignments may be done online. 

Learning Outcomes

Upon completion of the course the student will be able to:

  1. Explain/define terms and quantities encountered: displacement, velocity/speed, acceleration, free-fall, scalar, vector resultant, vector component, equilibrium, mass, weight, force, free body diagram, centre of gravity, torque, lever arm, friction, work, kinetic energy, potential energy, power, momentum, impulse, moment of inertia, angular displacement, angular velocity, angular acceleration, centripetal force, centripetal acceleration, density, pressure, fluid pressure, temperature, thermal energy, specific heat, latent heat, heat conduction, convection, radiation, electric charge, electrical conductor, insulator, electric field, electric potential difference/voltage, resistance, current, electromotive force.
  2. Identify the appropriate SI units for the quantities encountered.
  3. State the major principles/laws encountered: first and second conditions for equilibrium, Newton’s three laws of motion, law of universal gravitation, work-energy theorem, principles of conservation of energy and momentum, Archimedes’ principle, Coulomb’s law, Ohm’s law.
  4. Add vector quantities using the geometric and component (trigonometry) methods.
  5. Apply the laws/principles to the solution of numerical problems encountered in the textbook and in the laboratory.
  6. Perform basic experiments in mechanics, heat and electricity and analyze the data obtained using appropriate graphing techniques, scientific notation, significant figures and experimental uncertainty considerations.

course prerequisites

BC Foundations of Math 11 (C or higher) or BC Pre-calculus 11 (C or higher) 

curriculum guidelines

Course Guidelines for previous years are viewable by selecting the version desired. If you took this course and do not see a listing for the starting semester/year of the course, consider the previous version as the applicable version.

course schedule and availability
course transferability

Below shows how this course and its credits transfer within the BC transfer system. 

A course is considered university-transferable (UT) if it transfers to at least one of the five research universities in British Columbia: University of British Columbia; University of British Columbia-Okanagan; Simon Fraser University; University of Victoria; and the University of Northern British Columbia.

For more information on transfer visit the BC Transfer Guide and BCCAT websites.

assessments

If your course prerequisites indicate that you need an assessment, please see our Assessment page for more information.