Marine Biology

Faculty
Science & Technology
Department
Biology
Course Code
BIOL 2300
Credits
5.00
Semester Length
15 weeks
Max Class Size
35
Method Of Instruction
Lecture
Lab
Tutorial
Field Experience
Typically Offered
To be determined
Campus
New Westminster

Overview

Course Description
This course examines the history of marine biology, the physical and chemical characteristics of the marine environment, the diversity of marine life, marine ecology, and the effects of humans on the marine environment.
Course Content

1. Introduction to marine biology

  • History of marine biology
  • Ocean geography
  • Geological divisions of the marine environment

2. Physical and chemical characteristics of the marine environment

  • Seawater properties
    • Molecular structure of water
    • Salinity
    • Temperature
    • Light
    • Density
    • Pressure
    • Transparency
    • Dissolved gases
  • Ocean circulation
    • Coriolis effect
    • Surface currents and Eckman transport
    • Waves
    • Thermohaline circulation
    • Wind patterns
    • Tides

3. The diversity of marine life - classification, distribution, characteristics, structure, and function

  • Viruses
  • Domain Bacteria
  • Domain Archaea
  • Domain Eukarya
    • Protists
      • Green algae, red algae, brown algae, diatoms, dinoflagellates, silicoflagellates, haptophytes, cryptophytes, formainiferans, radiolarians, and ciliates
    • Kingdom Fungi
      • Lichens
    • Kingdom Plantae
      • Marine flowering plants
    • Kingdom Animalia
      • Sponges, cnidarians, flat worms, ribbon worms, round worms, arrow worms, peanut worms, segmented worms, molluscs, arthropods, ectoprocts, phoronids, brachiopods, echinoderms, hemichordates, invertebrate chordates, jawless fishes, cartilaginous fishes, bony fishes, reptiles, and mammals

4. Marine ecology

  • Ecological principles
    • Population growth and regulation
    • Community organization
    • Symbiotic relationships
    • Biological zonation
    • Energy flow
    • Productivity
    • Biogeochemical cycles
  • Marine ecosystems
    • Intertidal
      • Types of intertidal ecosystems, abiotic characteristics, and biotic characteristics
    • Estuaries and salt marshes
      • Types of estuaries and salt marshes, abiotic characteristics, and biotic characteristics
    • Continental shelf
      • Types of shelf environments, abiotic characteristics, and biotic characteristics
    • Coral reefs
      • Types of coral reefs, abiotic characteristics, and biotic characteristics
    • Ocean surface
      • Types of ocean surface environments, abiotic characteristics, and biotic characteristics
    • Ocean depths
      • Types of ocean depth environments, abiotic characteristics, and biotic characteristics

5. Humans and the oceans

  • Marine resources
    • Fish, aquaculture, oil and gas, mining, energy, and minerals
  • Human impacts on marine environments
    • Climate change (acidifcation and temperature), alteration of habitats, pollution, threatened and endangered species, and marine conservation and protection

Laboratory topics may include the following:

1. Microscopy

  • Usage of compound and dissecting micrscopes
  • Kohler illumination
  • Oil immersion

2. Scientific method and experimental design

  • Measuring tidal height
  • Sampling techniques
  • Designing an experiment
  • Writing and preparing a research proposal

3. Statistics

  • Descriptive statistics
  • T-test
  • ANOVA
  • Chi-square analysis
  • Regression
  • Correlation
  • Using SPSS
  • Graphing data

4. Physical and chemical analysis of seawater

  • Density
  • Salinity
  • Dissolved oxygen concentration, oxygen solubility, percent saturation
  • pH
  • Nitrate, phosphate, sulfate, copper, and chlorophyll a concentrations

5. Topics in oceanography

  • Seawater stratification
  • Seawater mixing
  • Pressure
  • Buoyancy
  • Radiative heat transfer
  • Convection
  • Thermal expansion

6. Marine viruses and prokaryotes

  • Cell morphology
  • Gram staining
  • Colony morphology
  • Species richness
  • Coliform abundance
  • Cyanophage abundance

7. Seaweeds of British Columbia

  • Dinguishing seaweed groups (green, red, and brown) based on thallus colour and morphology
  • Microscopic examination of seaweed thallus construction
  • Macroscopic and microscopic examination of seaweed life cycle stages 
  • Use dichotomous keys to identify unknown seaweed specimens

8. Infaunal organisms

  • Identification of organisms living in marine sediments
  • Identification of organisms living in biofilms
  • Assessing species richness relative to grain size in marine sediments

9. Plankton

  • Identify the diversity of life obtained from plankton tows (diatoms, dinoflagellates, and zooplankton)
  • Correlate plankton diversity and abundance with abiotic and biotic characteristics of seawater

10. Invertebrates

  • Identify and characterize invertebrates from a number of different animal phyla
  • Use dichotomous keys to identify unknown invertebrate specimens

11. Field Research Project

  • Design a research project
  • Collect data from the field to test a hypothesis
  • Analyze collected data using statistics
  • Present data in a graph (where appropriate)
  • Present the research project to the class
  • Submit the research project as a term paper

 

 

Methods Of Instruction

This course involves four hours of lecture and tutorial/week and three hours of laboratory work.  The lecture content is integrated with laboratory experiments, readings in the textbook, and scientific journal articles.

Means of Assessment

Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on the following:

Tests/Assignments: 0-10%

Laboratory Reports and Practical Assessments: 15-25%

Research Project Poster/Presentation and Term Paper: 15-30%

Midterm Theory Examination(s): 20-25%

Final Theory Examination: 30-40%

Learning Outcomes

Upon completion of this course, the student should be able to:

  1. Describe the history of marine biology as a field of study.
  2. Summarize the basic divisions of the marine environment.
  3. Describe the physical and chemical properties of seawater.
  4. Illustrate and model the causes of water movement and ocean circulation.
  5. Identify and compare the taxonomy, characteristics, structure, and function of marine life (including viruses, bacteria, archaea, protists, plants, invertebrates, and vertebrates).
  6. Explain ecological concepts and principles and how they apply to marine ecosystems.
  7. Categorize marine ecosystems (including intertidal, estuaries, salt marshes, continental shelf, coral reefs, the ocean surface, and the ocean depths) based upon physical and biological characteristics.
  8. Outline the interactions between humans and the oceans (topics may include marine resources, habitat loss, pollution, and climate change).
  9. Demonstrate lab/field-related skills such as microscopy, chemical and physical analyses of seawater, statistical analyses of data, and the identification of marine viruses, bacteria, phytoplankton, zooplankton, seaweeds, and invertebrates.
  10. Design, conduct, interpret, and present a field-based research project.
Textbook Materials

Consult the Douglas College Bookstore for the latest required textbooks and materials. Example textbooks and materals may include:

P. Castro and M. E. Huber, Marine Biology, current edition

Requisites

Prerequisites

Corequisites

None

Equivalencies

None

Requisite for

This course is not required for any other course.

Course Guidelines

Course Guidelines for previous years are viewable by selecting the version desired. If you took this course and do not see a listing for the starting semester / year of the course, consider the previous version as the applicable version.

Course Transfers

Institution Transfer Details Effective Dates
Capilano University (CAPU) CAPU BIOL 2XX (3) 2004/09/01 to -
Kwantlen Polytechnic University (KPU) KPU BIOL 2XXX (4) 2004/09/01 to -
Langara College (LANG) LANG BIOL 2XXX (3) 2004/09/01 to -
Okanagan College (OC) OC BIOL 2XX (3) 2005/09/01 to -
Simon Fraser University (SFU) SFU BISC 1XX (3) & SFU BISC 406 (0) 2004/09/01 to 2010/12/01
Simon Fraser University (SFU) SFU BISC 2XX (3), B-Sci 2011/01/01 to -
Thompson Rivers University (TRU) TRU BIOL 2XX (3) 2004/09/01 to 2010/08/31
Thompson Rivers University (TRU) TRU BIOL 2XXX (3) 2010/09/01 to -
Trinity Western University (TWU) TWU BIOL 262 (3) 2004/09/01 to -
University of British Columbia - Okanagan (UBCO) UBCO BIOL 3rd (3) 2005/05/01 to -
University of British Columbia - Vancouver (UBCV) UBCV BIOL 2nd (3) 2004/09/01 to -
University of Northern BC (UNBC) UNBC BIOL 2XX (3), For students declaring their major in ENVS, waive UNBC ENSC 202 2004/09/01 to -
University of the Fraser Valley (UFV) UFV BIO 3XX (4) 2004/09/01 to -
University of Victoria (UVIC) UVIC BIOL 3XX (1.5) 2004/09/01 to -
Vancouver Island University (VIU) VIU BIOL 2nd (3) 2004/09/01 to -

Course Offerings

Winter 2021

CRN
Days
Dates
Start Date
End Date
Instructor
Status
Location
12571
Thu Tue
04-Jan-2021
- 12-Apr-2021
04-Jan-2021
12-Apr-2021
Clasen
Jessica
Open
Online
BIOL 2300 001 includes a three-hour lab as part of the scheduled class times.

This course will include some synchronous on-line activities. Students should plan to be available on-line at scheduled course times. Synchronous on-line activities may include lecture, or they may not. In some courses, synchronous class time may be used instead for active learning components (e.g. discussions, labs).
Max
Enrolled
Remaining
Waitlist
18
0
18
0
Days
Building
Room
Time
Thu
9:30 - 12:20
Tue Thu
12:30 - 14:20
CRN
Days
Dates
Start Date
End Date
Instructor
Status
Location
14453
Tue Thu
04-Jan-2021
- 12-Apr-2021
04-Jan-2021
12-Apr-2021
Clasen
Jessica
Open
Online
BIOL 2300 002 includes a three-hour lab as part of the scheduled class times.

This course will include some synchronous on-line activities. Students should plan to be available on-line at scheduled course times. Synchronous on-line activities may include lecture, or they may not. In some courses, synchronous class time may be used instead for active learning components (e.g. discussions, labs).
Max
Enrolled
Remaining
Waitlist
17
0
17
0
Days
Building
Room
Time
Tue Thu
12:30 - 14:20
Thu
14:30 - 17:20