Computer Programming II

Curriculum guideline

Effective Date:
Course
Discontinued
No
Course code
CMPT 1209
Descriptive
Computer Programming II
Department
Computing Science
Faculty
Science and Technology
Credits
3.00
Start date
End term
Not Specified
PLAR
No
Semester length
15 Weeks
Max class size
35
Contact hours

Weekly Distribution:

  • Lecture: 2 hours
  • Lab: 2 hours
Method(s) of instruction
Lecture
Lab
Learning activities

Lectures, labs, and self-directed learning (programming assignments)

Course description
This is a second course in computing science and programming, presented using an object-oriented perspective and intensive hands-on experience. Students will learn how to apply fundamental object-oriented concepts using a high-level programming language like C++ to efficiently program applications that have an intermediate level of difficulty. Topics include encapsulation, inheritance, aggregation, polymorphism, templates, and virtual functions. Software development lifecycle and modelling, code efficiency analysis, event-driven programming, and exception handling are also introduced in this course.
Course content
  • A brief review of C++ basics and procedural programming:
    • Data types and operators
    • Decision-making and loop structures
    • Arrays, strings, and pointers
    • Static vs. dynamic memory allocation
    • Iterative and recursive functions
    • Basic IO and file processing
    • Exception handling
    • Modular programming: Procedural vs. object-oriented programming
  • Classes as abstract data types
  • Static class members vs. non-static instance members
  • Information hiding, private attributes, and getter/setter methods
  • Constructors, destructors, and copy constructors
  • Separating class specification from its implementation
  • Operator overloading and object type conversion
  • Rvalue references and move semantics
  • Inheritance, class hierarchies, and protected members
  • Aggregation
  • Polymorphism and virtual functions
  • Abstract base classes and pure virtual functions
  • Exception classes and object-oriented exception handling 
  • Generics, templates, and C++ STL
  • Lambda expressions and function pointers
  • Event-driven programming
    • CLI vs. GUI applications
    • C++ GUI API’s
    • Basic GUI controls
  • Program testing and code debugging techniques
  • An introduction to code quality factors
    • Efficiency analysis of algorithms
    • Good coding style, and conventions
    • Assertions, invariants, and correctness
  • An introduction to documentation systems
  • Basics of C++ programming for embedded systems
Learning outcomes

Upon the completion of this course, successful students will be able to:

  • Explain the importance of modular programming and compare procedural and object-oriented methodologies
  • Discuss encapsulation, abstraction, information hiding, inheritance, polymorphism, virtual functions, templates, and other object-oriented-related terminology
  • Identify different types of methods and their roles in a class: constructors, destructors, copy constructors, getters and setters, and operator-overloading methods
  • Design, develop, implement, and document programs efficiently according to current best practices
  • Identify and use some of the basic data structures implemented in C++ STL (Standard Template Library) to develop software
  • Analyze and compare the efficiency of algorithms
  • Explain the importance of assertions and invariants to ensure program correctness
  • Explain the role of documentation systems
  • Compare CLI (Command Line Interface) and GUI (Graphical User Interface) applications, and implement simple GUI applications
  • Define exception classes to utilize object-oriented exception handling
  • Apply lambda expressions and function pointers
Means of assessment

Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on the following.

Labs

10% - 20%
Assignments 10% - 20%
Quizzes 0% - 10%
Midterm Exam 25% - 35%
Final Examination 30% - 40%
Total 100%

**In order to pass the course, in addition to receiving an overall course grade of 50%, students must achieve a grade of at least 50% on the combined weighted examination components (including quizzes, midterm and final examinations.)

Textbook materials

Consult the Douglas College Bookstore for the latest required textbooks and materials.

Sample text:

Introduction to C++ Programming and Data Structures (latest edition), Daniel Liang, Pearson, ISBN: 978-0-13-466985-4

Prerequisites

Minimum C grade in CMPT 1109* or CMPT 1110 or CMPT 1105 or CSIS 1175

* CMPT 1109 is strongly preferred.

Corequisites

Not Specified