Chemical Bonding - Review: Importance of carbon in organic chemistry. Types of chemical bonds - ionic, covalent, polar covalent. Covalent Bonding and Molecular Shape Theories: Lewis, VSEPR, Valence Bond, Molecular Orbital.
Isomerism and Functional Group Overview - Review: Representation of structural formulas. Isomerism - definition, types, nomenclature. General formulas and structures of the following functional groups - Hydrocarbons, Alkenes, Alkynes, Akyl Halides, Alcohols, Ethers, Amines, Aldehydes, Ketones, Carboxylic Acids, Amides and Esters. Molecules with de-localized electrons, drawing resonance structures, determining strucutres significant to a resonance hybrid.
Introduction to I.R. and U.V. Spectroscopy:Physical principles. Experiment design. Spectra interpretation.
Acids and Bases in Organic Chemistry: Bronsted/Lowry and Lewis Acid/Base theories - background, definitions, examples, and identification of common acids and bases. Use of curved arrows in Organic Chemistry and reaction mechanisms. Organic compound acidity as a function of conjugate base structure. Ranking organic compound acidity, predicting the direction of organic acid/base equilibria.
Alkanes and Cycloalkanes - Conformational Analysis:Review of Newman projections and corresponding potential energy diagrams of alkanes. Relative stabilities, conformations, and ring strain in cyclopropane, cylobutane and cyclopentane. Chair and boat forms of cyclohexane. Conformational analysis of substituted cyclohexanes.
Stereoisomerism: Concept of chirality - non-superimposable mirror images. Enantiomers and diastereomers - definition, recognition, drawing, differences in physical and chemical properties. Meso compounds. Cahn-Ingold-Prelog R/S system of naming chiral centres. E/Z System for naming alkene diastereomers. Optical activity - methods of determination, theory, specific rotation, optical purity, enantiomeric excess. Fischer projection drawings.
Organic Reactivity and Mechanisms: Introduction to thermodynanmics and kinetics as they relate to organic reaction mechanisms. Reaction potential energy plots - reactants, products, intermediates, transition states, relating energy plots to mechanisms. Nucleophiles and electrophiles - recognizing reaction roles. Communicating organic reaction mechanisms with curved arrows. Classifying arrow pushing patterns. Carbocation stability and rearrangement.
Nucleophilic Substitution Reactions (reactivity of alkyl halides/derivatives): Naming alkyl halides. SN2 reactions - mechanism, transition state, stereochemical outcomes, reaction kinetics. SNl reactions - mechanism, carbocation stability, stereochemical outcomes, kinetics. Factors affecting rates and outcomes of SNl and SN2 reactions - substrates, strong/weak nucleophiles, concentration, temperature, solvent.
Elimination Reactions: Naming alkenes. Alkene stability. E2 reactions - substrates, bases, kinetics, regioselectivity, stereochemical outcomes. E1 reactions - substrates, bases, kinetics, carbocation intermediates, regioselectivity, stereochemical outcomes. Zaitsev's Rule. Determining E2 or E1 mechanism/strong and weak bases. Predicting a substitution/elimination mechanism and products.
Alkene Addition Reactions: Bonding in alkenes. Pi electrons as nucleophiles. Markovnikov's Rule. Hydrohalogenation. Acid-catalyzed hydration. Oxymercuration-demercuration. Hydroboration-oxidation. Catalytic hydrogenation. Halogenation. Halohydrin reactions. Dihydroxylation. Ozonolysis. Introduction to organic synthesis/retrosynthesis.
Alkynes: Bonding in alkynes. Naming alkynes. Alkyne synthesis via elimination. Alkyne reduction with hydrogen - catalysts, stereochemical outcomes. Acid catalyzed hydration, Hydroboration-oxidation. Halogenation. Alkynes in synthesis - de-protonated alkynes as nucleophiles to make carbon-carbon bonds.
Alcohols/Phenol and Ethers: Alcohol bonding and naming, including phenols. Alcohol acidity and physical properties. Converting alcohols into leaving groups - mesylates, tosylates, and alkyl halides, including stereochemical implications. Converting alcohols/phenol to ethers via the Williamson ether synthesis. Ether structure and naming. Cleaving ethers with strong acid. Synthesizing epoxides from alkenes. Reactions of ethers and epoxides including ring opening reactions of epoxides. Regiochemistry of reaction on unsymmetrical expoxides.
Laboratory Content
The laboratory experiments will be selected from the following list and performed during the lab period:
The course will be presented using lectures, problem sessions, and class discussion. Videos, other audio-visual aids, as well as on-line material will be used where appropriate. The laboratory will be used to illustrate the practical aspects of the course material.
Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on the following:
Lecture Material (70%)
Laboratory (30%)
Note:
A student who misses three or more laboratory experiments will earn a maximum P grade.
A student who achieves less than 50% in either the lecture or laboratory portion of the course will earn a maximum P grade.
Upon completion of this course, students will be able to:
Consult the Douglas College Bookstore for the latest required textbooks and materials. Example textbooks and materials include:
Organic Chemistry by D. Klein (current edition)
Chemistry 2321 Laboratory Manual, Douglas College
Safety eyewear
Carbonless copy paper notebook
Lab coat
Courses listed here must be completed either prior to or simultaneously with this course:
Courses listed here are equivalent to this course and cannot be taken for further credit:
Course Guidelines for previous years are viewable by selecting the version desired. If you took this course and do not see a listing for the starting semester / year of the course, consider the previous version as the applicable version.
Institution | Transfer Details | Effective Dates |
---|---|---|
Alexander College (ALEX) | ALEX CHEM 201 (4) | 2012/09/01 to 2016/08/31 |
Alexander College (ALEX) | ALEX CHEM 201 (4) | 2016/09/01 to - |
Camosun College (CAMO) | CAMO CHEM 230 (4) | 2013/01/01 to - |
Capilano University (CAPU) | CAPU CHEM 200 (4) | 2004/09/01 to - |
Kwantlen Polytechnic University (KPU) | KPU CHEM 2320 (4) | 2004/09/01 to - |
Langara College (LANG) | LANG CHEM 2316 (4) | 2004/09/01 to - |
Okanagan College (OC) | OC CHEM 212 (3) | 2005/09/01 to - |
Simon Fraser University (SFU) | SFU CHEM 281 (4), Q & SFU CHEM 1XX (1) | 2004/09/01 to - |
Thompson Rivers University (TRU) | TRU CHEM 2120 (3) | 2010/09/01 to - |
Thompson Rivers University (TRU) | TRU CHEM 212 (3) | 2004/09/01 to 2010/08/31 |
Trinity Western University (TWU) | TWU CHEM 221 (3) | 2004/09/01 to - |
University of British Columbia - Okanagan (UBCO) | UBCO CHEM 203 (3) or UBCO CHEM 213 (3) | 2004/09/01 to - |
University of British Columbia - Vancouver (UBCV) | UBCV CHEM 2nd (4); DOUG CHEM 2321 (5) & DOUG CHEM 2421 (5) = UBCV CHEM 203 (4) & UBCV CHEM 213 (3) & UBCV CHEM 245 (1) | 2004/09/01 to - |
University of Northern BC (UNBC) | UNBC CHEM 201 (3) & UNBC CHEM 250 (1) | 2004/09/01 to - |
University of the Fraser Valley (UFV) | UFV CHEM 213 (4) | 2004/09/01 to - |
University of Victoria (UVIC) | UVIC CHEM 231 (1.5) | 2004/09/01 to - |
Vancouver Community College (VCC) | VCC CHEM 2130 (4) | 2019/05/01 to - |
Vancouver Island University (VIU) | VIU CHEM 231 (4) | 2004/09/01 to - |