COVID-19 information and resources
Douglas College wordmark
Facebook logo Twitter logo Instagram logo Snapchat logo YouTube logo Wordpress logo
back to search

Introductory Chemistry

Course Code: CHEM 1108
Faculty: Science & Technology
Department: Chemistry
Credits: 4.0
Semester: 15
Learning Format: Lecture, Lab
Typically Offered: Fall, Summer, Winter
course overview

This course quickly reviews the content of CHEM 1104, including nomenclature, stoichiometry, gases and atomic structure, and then continues with the study of the following topics: Lewis structures and bonding, thermochemistry, equilibrium as well as acids and bases.

Course Content

1.  Introduction and Review

Scientific Measurements: Measurements, errors, precision and accuracy, uncertainty, significant figures.

Atoms, Molecules, and Ions: Isotopes, mole, formulas, percentage composition, nomenclature.

Stoichiometry Review: Determining oxidation states, balancing redox reactions, calculation of percentage yield, limiting reactant problems, solutions: concentration units and stoichiometry, titrations

2. Structure and bonding

Valence and core electrons, Lewis symbols for elements and ionic compounds, drawing Lewis structures, octet rule, bond length and strength, trends in electronegativity, non-polar and polar bonds and consequences of polar bonds on physical properties.

3. Principles of Reactivity:  Thermochemistry

Energy units, heat capacity, energy transfer, enthalpy, calorimetry, phase changes, Hess’s Law, standard heats of formation.

4.  Chemical Equilibrium

The equilibrium constant, interpretation of equilibrium constant values, calculations involving Kc, Le Chatelier’s Principle, controlling chemical reactions.

5.  Gases and Liquids

Properties of gases, Ideal Gas equation, calculations, gas mixtures and Dalton’s Law of partial pressures.

6.  Introduction to Acids and Bases

Properties, definitions, conjugate acid/base pairs, autoionization of water, pH scale, relative acid strengths, Ka and Kb, calculations, salts and hydrolysis, common ion effect.

Laboratory Content

Laboratory experiments will be selected from the following list and will be performed during the lab period:

  1. Analytical balance and metric conversions
  2. Density measurements
  3. Acid-Base Titrations
  4. Thermochemistry
  5. Redox: Determination of Water of Hydration
  6. Chemical Equilibrium
  7. Molar Mass of Magnesium
  8. Ideal Gas Constant
  9. Redox: Water of hydration of Copper (II) Sulfate
  10. Acid Dissociation Constant

Methods of Instruction

The course will be presented using lecture, problem sessions and class discussions.  In-class demonstrations of computer-based educational materials and videos will be used where appropriate.  The laboratory consists of experiments performed by students, either individually or in pairs, which illustrate the lecture material, or encourage good experimental technique. Close coordination will be maintained between laboratory and classroom work whenever possible.  This will be accomplished by discussing laboratory experiments in class and, when necessary, by using the lab period for problem solving. Alternately, the course may be offered in a hybrid format in which some of the lecture material is replaced with online activities.

Means of Assessment

Evaluation will be carried out in accordance with Douglas College policy.  The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester.

Lecture Material (75%)

  • Two or three in-class tests will be given during the semester (30% in total).
  • A final exam covering the entire semester’s work will be given during the final examination period (30%).
  • Any or all of the following evaluations, at the discretion of the instructor:  problem assignments, quizzes, class participation (5% maximum). (15% in total)

Laboratory (25%)

  • Written reports for each experiment which will be handed in on report sheets and graded. There will also be several written quizzes based on the procedure and theory of the various experiments.
  • Quantitative results of experiments performed on unknown samples will be graded.
  • A practical laboratory exam will be given in the last lab period of the semester.


A student who misses three or more laboratory experiments will earn a maximum P grade.

A student who achieves less than 50% in either the lecture or laboratory portion of the course will earn a maximum P grade.

Learning Outcomes

  1. Express the precision of a calculated quantity given the uncertainties in the measurements used in the calculation.
  2. Use significant figures in calculations.
  3. Given the mass of a substance, calculate the number of moles, and the number of particles in the sample.
  4. Given the percent composition of a compound and the molar mass, find the empirical and molecular formulas.
  5. Name ionic compounds, including those that involve polyatomic ions.
  6. Determine oxidation states and balance any redox reaction that occurs under acidic conditions.
  7. Given the balanced equation for a chemical reaction, carry out the required stoichiometric calculations.  The substances in the reaction may be gases, solids, liquids, or solutions. 
  8. Carry out calculations involving the ideal gas equation including density and molar mass.  
  9. Define any of the terms used in the course, for example:  mole, specific heat capacity, ideal gas, common ion effect, etc.
  10. Distinguish between core and valence electrons.
  11. Draw Lewis structures, explain how electronegativity difference results in polar bonds and the consequences of this polarity.
  12. Carry out thermochemical calculations based on data obtained in calorimetric measurements.
  13. Use thermochemical tables to calculate H° for a given chemical reaction.
  14. Use the Principle of Le Chatelier to predict the direction of change in a system in equilibrium as the result of a given change in temperature or change in concentration of the species in the system.
  15. Solve problems involving the use of the concentration equilibrium constant, Kc, for gaseous and aqueous systems.
  16. Write balanced equations for all reactions or equilibria involving acids and bases.
  17. Calculate the pH of a given solution of any strong acid or base.
  18. Calculate the pH of a solution of given concentration of a weak acid or base (or the salt of a weak acid or base).

course prerequisites

CHEM 1104 (C or better) AND BC PRECALCULUS 11 (C or better) or equivalent


CHEM 11 (C or better) AND BC PRECALCULUS 11 (C or better) or equivalent


Courses listed here must be completed either prior to or simultaneously with this course:

  • No corequisite courses


Courses listed here are equivalent to this course and cannot be taken for further credit:

  • No equivalency courses

curriculum guidelines

Course Guidelines for previous years are viewable by selecting the version desired. If you took this course and do not see a listing for the starting semester/year of the course, consider the previous version as the applicable version.

course schedule and availability
course transferability

Below shows how this course and its credits transfer within the BC transfer system. 

A course is considered university-transferable (UT) if it transfers to at least one of the five research universities in British Columbia: University of British Columbia; University of British Columbia-Okanagan; Simon Fraser University; University of Victoria; and the University of Northern British Columbia.

For more information on transfer visit the BC Transfer Guide and BCCAT websites.


If your course prerequisites indicate that you need an assessment, please see our Assessment page for more information.