Douglas College wordmark
Facebook logo Twitter logo Instagram logo Snapchat logo YouTube logo Wordpress logo

Registration for the Fall 2019 semester begins June 25.  Watch your email for more details.

back to search

Ecology

Course Code: BIOL 3305
Faculty: Science & Technology
Department: Biology
Credits: 5.0
Semester: 15 weeks
Learning Format: Lecture, Lab, Tutorial
Typically Offered: TBD. Contact Department Chair for more info.
course overview

A study of the interaction of living organisms with biotic and abiotic aspects of their environment. Population, community and ecosystem ecology are examined along with a consideration of topics in evolutionary ecology like life history theory, mating systems and social behaviour. The course also investigates conservation of biological diversity and the impact of human activities on natural systems.

Course Content

1. Introduction to Ecology

  • The scientific method
  • Ecology and the levels of the Biosphere
  • Ecology, evolution and adaptation

2. Biotic and abiotic aspects of the environment

  • The abiotic environment
  • The biotic environment
  • Terrestrial, freshwater and marine ecosystems

3. Life history theory

  • The principal of allocation
  • Life-history trade-offs
  • Phenotypic plasticity
  • Senescence

4. Evolution of sexual reproduction

  • Sex ratios
  • Female choice and mating systems
  • Sexual selection

5. Social behaviour

  • Costs and benefits of social behaviours
  • Kin selection and altruism
  • Game theory and cooperative behaviour
  • Parent-offspring conflict and/or sexual conflict
  • Evolution of eusociality

6. Population ecology

  • Characteristics of populations
  • Estimation of population density
  • Exponential and logistic growth
  • Age structure and life tables
  • Density-dependent and -independent factors

7. Predation, parasitism and herbivory

  • Adaptations of predators (parasites, herbivores) and prey (hosts, plants)
  • Prey location, selection, capture and assimilation
  • Predator avoidance, escape and defence
  • Predator-prey population dynamics
  • Stabilizing mechanisms in two-species models

8. Competition

  • Interspecific and intraspecific competition
  • Competitive exclusion
  • Resource partitioning
  • Exploitation and interference competition
  • Logistic model and competition

9. Mutualism

  • Obligate vs. facultative mutualism
  • Effect on individual fitness
  • Effect on communities and ecosystems
  • Coevolution

10. Community ecology

  • Community structure
  • Food webs
  • Abundance-diversity indices
  • Ecological succession

11. Ecosystem ecology

  • Food chains and trophic levels
  • Food webs
  • Ecological efficiency
  • Nutrient cycling and regeneration
  • Biogeography and climate diagrams

12. Biological diversity

  • Global patterns of biological diversity
  • Landscape ecology
  • Species area-relationships
  • Island biogeography theory
  • Metapopulation theory
  • Conservation of biological diversity

13. Environmental issues and resource management
Topics may include:

  • Environmental impact assessments
  • Persistence and toxicity of pollutants
  • Integrated pest management
  • Toxic waste, acid rain, air pollution
  • Global warming

14. Ecological field and lab techniques

  • Design of manipulative field and lab experiments
  • Habitat characterization (e.g. stream, forest, meadow, salt marsh)
  • Plant/animal identification
    Techniques may include:
  • Quadrat/point quarter sampling
  • Transect sampling
  • Random/systematic sampling

Methods of Instruction

This course involves 4 hours per week of classroom instruction and four hours per week of laboratory activity or field trip.  Classroom work will include lectures and tutorials, and is integrated with textbook and scientific journal readings.  Field trips and laboratory activities complement and enhance understanding of the theory content of the course.

Means of Assessment

Evaluation will be carried out in accordance with Douglas College policy.  The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester.  Evaluation will be based on the following:

Class Tests & Assignments 10-20%
Lab & Field Trip Reports 10-20%
Term Project 10-20%
Midterm Examination 20-30%
Final Examination 20-35%
Total 100%

Learning Outcomes

Upon completion of this course, the student wil be able to:

  1. Characterize and distinguish biotic and abiotic components of terrestrial, marine and fresh water environments.
  2. Employ an evolutionary ecology approach to analyze life histories, sexual reproduction, sex ratios, mate choice, and social and altruistic behaviour.
  3. Describe population structures and growth, and identify the factors that limit the distribution and abundance of populations.
  4. Describe community structure and the dynamics of community organization and change including the process of ecological succession.
  5. Illustrate the flow of energy through ecosystems with reference to trophic levels and ecological efficiency.
  6. Illustrate the cycling of nutrients through ecosystems, then compare and contrast ecosystem energy flow with nutrient flow.
  7. Compare and contrast the effects of competition, predation, and mutualism on individual life histories and behaviour, population growth, community structure and ecosystem function.
  8. Analyze human impacts on ecosystems using the general principles of ecology.
  9. Describe the principles of field sampling and conduct field research using a variety of sampling techniques.
  10. Interpret field results, perform simple statistics and write reports.
  11. Research an ecological topic and communicate the results in a written report, oral presentation and/or poster.

course prerequisites

(BIOL 1110 and BIOL 1210) or BIOL 1310

Corequisites

Courses listed here must be completed either prior to or simultaneously with this course:

  • No corequisite courses

Equivalencies

Courses listed here are equivalent to this course and cannot be taken for further credit:

  • No equivalency courses

curriculum guidelines

Course Guidelines for previous years are viewable by selecting the version desired. If you took this course and do not see a listing for the starting semester/year of the course, consider the previous version as the applicable version.

course schedule and availability
course transferability

Below shows how this course and its credits transfer within the BC transfer system. 

A course is considered university-transferable (UT) if it transfers to at least one of the five research universities in British Columbia: University of British Columbia; University of British Columbia-Okanagan; Simon Fraser University; University of Victoria; and the University of Northern British Columbia.

For more information on transfer visit the BC Transfer Guide and BCCAT websites.

assessments

If your course prerequisites indicate that you need an assessment, please see our Assessment page for more information.