Course Information

Page 1 of 4

	.		1 490 1 01 4	
ivision: INSTRUCTIONAL		DA	DATE: May 27, 1997	
3: Department:	SCIENCE & TECHNOLOGY		ew Course:	
•		Re	evision of Course formation form:X	
		DA	ATED: September 20, 1991	
C: PHYS	170 D:	MECHANICS for APPLIED	D SCIENCE E: 3	
Subject & Co	ourse No.	Descriptive Title	Semester Credit	
Science/Engineer	ended for students pro- ing. Topics include sta rium, friction, particle k	ceeding to studies in Applied atics of particles, rigid body kinematics and dynamics,	Summary of Revisions: (Enter date & section) Ex: Section C,E,F, &R 1997-05-29 H	
Type of Instruction: Hours Per Week/ Per Semester cture Hrs. oratory Hrs. minar Hrs.		ester Hrs. Hrs.	H: Course Prerequisites: Physics 12 (C or higher) or PHYS 107 I: Course Corequisites: MAT 120 must precede or be taken concurrently	
	d Experience Hrs. ticum Hrs. p Hrs.		J: Course for which this course is a pre-requisite K: Maximum Class Size:	
TOTAL L: College Cred College Cred	4_ HOURS		M: Transfer Credit: Requested Granted X Specify Course Equivalents or Unassigned Credit as Appropriate U.B.C. PHYS 170 S.F.U. MATH 262 U. Vic. PHYS 122 OTHER:	
	26		D. W	
COURSE DEST	Meter	lun	DEAN P. H. Drys	
VICE PRESIDENT (INSTRUCTION)			REGISTRAR ()	

© Douglas College

N: Textbooks and materials to be purchased by students (Use Bibliographic Form):

> Hibbeler, R.C., Engineering Mechanics: Statics and Dynamics, 6th Edition, MacMillan, 1992

Complete Form with Entries Under the Following Headings:

- O. Course Objectives;
- P. Course Content: Q. Method of Instruction:
- R. Course Evaluation

O. **Course Objectives:**

The student will be able to:

- 1) analyze two and three dimension concurrent force systems acting upon particles in equilibrium
- 2) analyze the equilibrium of rigid bodies in two and three dimensions and determine equivalent systems of forces
- apply the laws of friction to practical problems 3)
- analyze motion of particles and particle-like objects and systems using displacement, velocity, acceleration, force, Newton's second law, energy, momentum, conservation principles.

P. **Course Content**

1. Statics of Particles

Forces in a Plane

- 1.1 Force on a Particle; Resultant of Two Forces
- 1.2 Vectors
- Addition of Vectors 1.3
- Resultant of Several Concurrent Forces 1.4
- Resolution of a Force into Components 1.5
- 1.6 Rectangular Components of a Force:Unit Vectors
- Addition of Forces by Summing x and y components 1.7
- Equilibrium of a Particle 1.8
- 1.9 Newton's First Law of Motion
- 1.10 Problems Involving the Equilibrium of a Particle; Free Body Diagrams

Forces in Space

- Rectangular Components of a Force in Space 1.11
- Force Defined by Its Magnitude and Two Points on Its Line of Action 1.12
- Addition of Concurrent Forces in Space 1.13
- 1.14 Equilibrium of a Particle in Space

2. Rigid Bodies: Equivalent Systems of Forces External and Internal Forces 2.1 Principle of Transmissibility, Equivalent Forces 2.2 2.3 **Vector Product of Two Vectors** 2.4 Vector Products Expressed in Terms of Rectangular Components 2.5 Moment of a Force about a Point 2.6 Varignon's Theorem 2.7 Rectangular Components of the Moment of Force Scalar Product of Two Vectors 2.8 2.9 Mixed Triple Product of Three Vectors 2.10 Moment of Force about a Given Axis 2.11 Moment of a Couple 2.12 **Equivalent Couples** 2.13 Addition of Couples Couples Represented by Vectors 2.14 2.15 Resolution of a Given Force into a Force at a particular point and a Couple Reduction of a system of Forces to One Force and One Couple 2.16 2.17 **Equivalent Systems of Forces** 2.18 Equipollent Systems of Vectors 2.19 Further Reduction of a system of Forces 3. Equilibrium of Rigid Bodies 3.1 Rigid Body in Equilibrium Free-Body Diagram 3.2 3.3 Reactions at Supports and Connections for a Two-dimensional Structure Equilibrium of a Rigid Body in Two Dimensions 3.4 3.5 Statically Indeterminate Reactions, Partial Constraints 3.6 Equilibrium of a Two-Force Body Equilibrium of a Three-Force Body 3.7 Reactions at Supports and Connections for a Three Dimensional Structure 3.8 3.9 Equilibrium of a Rigid Body in Three Dimensions **Friction** 4. 4.1 The Laws of Dry Friction. Coefficients of Friction 4.2 **Angles of Friction** 4.3 **Problems Involving Dry Friction** 4.4 Wedges 4.5 Square-Threaded Screws Journal Bearings. Axle Friction 4.6 Thrust Bearings. Disk Friction 4.7 Wheel Friction. Rolling Resistance 4.8 **Belt Friction** 4.9 Kinematics of Particles 5. Rectilinear Motion of Particles Position. Velocity, and Acceleration 5.1 Determination of the Motion of a Particle 5.2 **Uniform Rectilinear Motion** 5.3 5.4 Uniformly Accelerated Rectilinear Motion **Motion of Several Particles** 5.5 Position Vector, Velocity, and Acceleration 5.6 **Derivatives of Vector Functions** 5.7 Rectangular Components of Velocity and Acceleration 5.8 Motion Relative to a Frame in Translation 5.9 Tangential and Normal Components 5.10

Radial and Transverse Components

5.11

6. Newton's Second Law

- 6.1 Newton's Second Law of Motion
- 6.2 Linear Momentum of a Particle. Rate of change of Linear Momentum
- 6.3 International system of Units (SI Units)
- 6.4 Equations of Motion
- 6.5 Dynamic Equilibrium
- 6.6 Angular Momentum of a Particle. Rate of Change of Angular Momentum
- 6.7 Equations of Motion in Terms of Radial and Transverse Components
- 6.8 Motion under a Central Force. Conservation of Angular Momentum
- 6.9 Law of Gravitation
- 6.10 Kepler's Laws of Planetary Motion

7. Energy and Momentum Methods

- 7.1 Work of a Force
- 7.2 Kinetic Energy of a Particle. Principle of Work and Energy
- 7.3 Applications of the Principle of Work and Energy
- 7.4 Power and Efficiency
- 7.5 Potential Energy
- 7.6 Conservative Forces
- 7.7 Conservation of Energy
- 7.8 Motion under a Conservative Central Force. Application to Space Mechanics
- 7.9 Principle of Impulse and Momentum
- 7.10 Impulse Motion
- 7.11 Impact
- 7.12 Direct Central Impact
- 7.13 Oblique Central Impact
- 7.14 Problems Involving Energy and Momentum

8. Systems of Particles

- 8.1 Application of Newton's Laws to the Motion of a System of Particles. Effective Forces
- 8.2 Linear and Angular Momentum of a system of Particles
- 8.3 Motion of the Mass Centre of a System of Particles
- 8.4 Angular Momentum of a System of Particles about its Mass Centre
- 8.5 Conservation of Momentum for a system of Particles
- 8.6 Kinetic Energy of a System of Particles
- 8.7 Work-Energy Principle. Conservation of Energy for a System of Particles
- 8.8 Principle of Impulse and Momentum for a System of Particles
- 8.9 Variable Systems of Particles
- 8.10 Steady Stream of Particles
- 8.11 Systems Gaining or Losing Mass

Q. <u>Method of Instruction</u>

Class time is devoted to lectures and problem solving.

R. Course Evaluation

The final grade assigned for the course will be based upon at least five evaluation components consisting of:

- 1) final examination minimum of 20% / maximum of 30%
- 2) a combination of tests and assignments minimum of 70% / maximum of 80%