Course Information

A: Division: <u>Academic</u>	Date: <u>May 1994</u>
B: Department: <u>Science and Math</u>	New Course:
	Revision of Course Information Form:x
	Dated: January 1979
C: Math 421 D: Introduction to Di	ifferential Equations E:3
Subject & Course No. Descriptive Title	
F: Calendar Description:	Summary of Revision:
This is a first course in the theory of ordinary differential equations. Topics include the solution	Sections F, H, N, O, P, R
of first- and higher order differential equations,	Sections F, H, N, O, F, H
power series solutions, Laplace transforms, linear	
and non-linear systems, stability, Euler methods and applications.	
and applications.	4
G: Type of Instruction: Hours Per Week	H: Course Prerequisites: Math 232 and Math 321
Lecture 4 Hrs.	I: Course Corequisites: None
Laboratory Hrs.	1. Course corequisites, Notice
Seminar Hrs.	
Clinical Experience Hrs.	J: Course for which this course
Field Experience Hrs.	is a prerequisite: None
Practicum Hrs. Shop Hrs.	
Studio Hrs.	K. Maximum Class Size: 35
Student Directed Learning Hrs.	1. Maximum ondo oneo.
Other Hrs.	M Transfer Credit:
TOTAL 4 Hrs.	Requested
TOTAL4 Hrs.	Granted <u>x</u>
	Specify Course Equivalents or
L: College Credit Transfer	Unassigned Credit as Appropriate
College Credit Non-Transfer	U.B.C. Math 315(3)
•	S.F.U. Math 310(3) U. Vic. Math 201(1.5)
	Other:
Auran Hanim	Soll buteon
COURSE DESIGNER(S)	DIVISIONAL DEAN
Charal Delan	P. H. Dela
DIRECTOR/CHARPERSON /	REGISTRAR

N: Textbooks and materials to be Purchased by Students:

Zill, Dennis G. A First Course in Differential Equations, PWS-KENT Publishing Company, 1993.

O. Course Objectives:

Upon completion of Math 421 the student should be able to:

- recognize and solve separable, homogeneous, exact and linear first-order differential equations
- determine whether or not a unique solution to a first-order or linear nth-order initial-value problem exists
- solve Bernoulli and Ricatti equations
- determine orthogonal trajectories of a given family of curves
- solve problems involving applications of linear equations including: growth and decay, series circuits, thermodynamics and mixture applications
- solve problems involving applications of non-linear equations including: logistic function, chemical reaction and law of mass action applications
- determine whether or not a set of functions is linearly dependent or independent
- determine whether or not a set of solutions to a differential equation are linearly dependent or independent using the Wronskian
- use reduction of order to find a second solution from a known solution
- solve homogeneous linear equations with constant coefficients
- express linear differential equations in terms of differential operators
- use the method of undetermined coefficients to solve nonhomogeneous linear differential equations for which the nonhomogeneous term can be annihilated
- solve nonhomogeneous linear differential equations using variation of parameters
- analyze problems involving simple harmonic motion
- recognize and solve Cauchy-Euler equations
- use power series techniques to solve differential equations in the neighborhood of ordinary points
- use the method of Frobenius to solve differential equations about regular singular points
- state the definition of the Laplace transform of a function and the sufficient conditions for its existence
- determine the Laplace transforms of basic functions, derivatives, integrals and periodic functions and find inverse transforms
- use the convolution theorem and translation theorems to find Laplace transforms and their inverses
- use Laplace transforms to solve initial value problems, integral equations and integrodifferential equations
- solve systems of differential equations using differential operators or Laplace transforms
- reduce higher order linear differential equations to systems in normal form
- use Euler methods to approximate solutions to differential equations
- analyze trajectories of autonomous first-order differential equations and comment on the stability of critical points
- find equilibrium solutions of second order differential equations
- find trajectories associated with simple linear and non-linear systems of equations and determine critical `points

P. Course Content:

- 1. First-Order Differential Equations: separable, homogeneous, exact, linear, Bernoulli, and Ricatti equations and applications
- 2. Higher Order Differential Equations: reduction of order, homogeneous linear equations with constant coefficients, differential operators and undetermined coefficients, variation of parameters
- 3. Equations with Variable Coefficients: Cauchy-Euler equations and power series solutions about ordinary and singular points, Bessel and Legendre equations
- 4. Laplace Transforms and applications

- 5. Systems of Linear Differential Equations: operator and Laplace transform techniques, systems of linear first-order equations, reduction of higher order equations to linear normal form
- 6. Non-linear Systems and Stability: solutions and trajectories of autonomous systems, stability of critical points
- 7. Numerical Solutions: Euler Methods

Q. Method of Instruction:

Lectures, problem sessions and assignments.

R. Course Evaluation:

Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on some of the following:

1. Weekly quizzes	0 - 40 %
2. Tests	20 - 70 %
3. Assignments	0 - 15 %
4. Attendance	0-5%
5. Class participation	0 - 5%
6. Final Examination	30%

[©] Douglas College. All Rights Reserved.