Page 1 of 5

Division:	ACADEMIC	DATE:
: Department:	SCIENCE & MATHEMATICS	New Course:
		Revision of Course Information form: X
		DATED: October 1979
C: MAT 2	32 D: Linear A	lgebra E: 3
Subject & Co	ourse No. Descriptive	Title Semester Credit
foundation in the r the first course in how to prove theo equations, matrice dimensional Euclic	ntroductory course designed to provide a soli- mathematics of linear algebra. This course is abstract mathematics and the student is taughterms. Topics include the solving of systems as and determinants, the vector space R ⁿ , n- dean space, general vectors spaces, linear igenvalues and eigenvectors and the	s often Ex: Section C,E,F, &A
: Type of Instructi	on: Hours Per Week/ Per Semester 4 Hrs.	H: Course Prerequisites: MAT 120
aboratory minar	Hrs.	i: Course Corequisites: NONE
linical Experience leid Experience racticum hop	Hrs. Hrs. Hrs.	J: Course for which this course is a pre-requisite MAT 421
tudio tudent Directed Le ther	Hrs.	K: Maximum Class Size: 35
TOTAL College Cred		M: Transfer Credit: Requested Granted X Specify Course Equivalents or Unassigned Credit as Appropriate U.B.C. MATH 221 S.F.U. MATH 232 U. Vic. MATH 210 OTHER:
COURSEDESIG	GNERICO M	Mbilga_ DIVISIONAL DEAN
Timum	d blas	P. H. Dogus
DIRECTOR/CH	AFFERSON	REGISTRAR ()

N. Textbooks and Materials to be Purchased By Student:

Stewart, LINEAR ALGEBRA with Application, 2nd Edition, Wm. C. Brown

O. Course Objectives:

Upon completion of MAT 232 the student should be able to:

- solve systems of n equations in m unknowns using Gauss-Jordan elimination and Gaussian elimination.
- solve problems in electrical network analysis or traffic flow (Optional).
- prove and apply the basic properties of matrix addition, scalar multiplication, matrix multiplication, the transpose of a matrix and the inverse of a matrix.
- express a system of equations as a matrix equation and vice versa.
- determine the inverse of a matrix by Gauss-Jordan elimination and use the inverse to find the unique solution of a system of equations.
- understand the terms square matrix, symmetric matrix, zero matrix, diagonal matrix, triangular matrix and identity matrix.
- solve problems which apply the principles of the Leontief Input-Output Model <u>or</u> a Markov chain model (Optional).
- evaluate the determinant of a n x n matrix
- prove and apply the basic properties of the determinant of a matrix.
- understand the terms singular, non-singular and invertible as applied to a matrix.
- determine the adjoint of a matrix and use the adjoint to calculate the inverse of a matrix.
- solve systems of equations using Cramer's Rule.
- prove, apply and explain the basic properties of vector addition and scalar multiplication on the vector space \mathbb{R}^n .
- give the geometrical interpretation of subspaces of \mathbb{R}^2 & \mathbb{R}^3 .
- prove that a given set of vectors is a subspace of \mathbb{R}^2 or \mathbb{R}^3 .

O. Course Objectives (continued):

Upon completion of MAT 232 the student should be able to:

- solve problems involving linear combinations, linear dependence, linear independence, the span of a set of vectors, bases and dimension in \mathbb{R}^n .
- determine the rank of a matrix, the basis and dimension of the column space of a matrix and the basis and dimension of the row space of a matrix.
- prove and apply the basic properties of the dot product and use the dot product to solve problems and define the norm of a vector, the angle between two vectors, the distance between two vectors and orthogonality in \mathbb{R}^n .
- prove the triangular inequality using the Cauchy-Schwartz Inequality.
- determine a basis for the set of vectors orthogonal to a given vector in \mathbb{R}^n .
- calculate the projection of one vector onto another in \mathbb{R}^n .
- explain the terms standard basis, orthogonal basis and orthonormal basis and be able to convert a basis into an orthonormal basis using the Gram-Schmidt Process (max of three vectors) in \mathbb{R}^n .
- prove and apply the basic properties of the cross product and use the cross product to calculate the area of a triangle and the volume of a parallelepiped.
- determine the various forms of the equations of lines and planes in three-space and be able to calculate the distance form a point to a plane and the distance from a point to a line.
- prove that the set of polynomials of degree less that or equal to n, P_n and the set of 2 x 2 matrices, M_{22} are vector spaces.
- determine which subsets of P2 and M22 are subspaces.
- solve problems involving linear combinations, linear dependence, linear independence, the span of a set of vectors, basis and dimension in P₂ and M₂₂.
- prove and apply the basic properties of an inner product in P₂ and M₂₂ and use the inner product to solve problems and define the norm of a vector, the angle between two vectors, the distance between two vectors and orthogonality.

O. Course Objectives (continued):

Upon completion of MAT 232 the student should be able to:

- prove or disprove that a given transformation is a linear transformation.
- form composite transformations from given linear transformations.
- determine the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m .
- determine the matrices that describe a rotation, a shear, a dilation or contraction and a reflection in \mathbb{R}^2 and given a 2 x 2 matrix, describe the transformation in terms of the foregoing.
- determine the kernel and range of a linear transformation and be able to express the solution as a basis of a subspace.
- determine the rank and nullity of a linear transformation.
- determine if a linear transformation is one-to-one.
- determine the coordinate vectors of vectors in P2 and M22.
- explain isomorphism of vector spaces.
- find the transition matrix from one basis to another and the image of a given vector.
- find the matrix of a linear transformation relative to given bases and the image of a given vector using the matrix of the transformation.
- determine the characteristic polynomial, eigenvalues and corresponding eigenspaces of a given matrix.
- prove that similar matrices have the same eigenvalues and use this property to diagonalize a square matrix.
- compute the power of a square matrix using the fact that Aⁿ = PDⁿP⁻¹.
- solve systems of first order recurrence equations and second order recurrence (difference) equations (Optional).

P. Course Content:

- 1. Solving Systems of Equations.
- 2. The Algebra of Matrices.
- 3. Determinants.
- 4. The Vector Space \mathbb{R}^n .
- 5. Vector Geometry.
- 6. General Vector Spaces.
- 7. Inner Product Spaces.
- 8. Linear Transformations and Linear Operators.
- 9. Eigenvalues and Diagonalization.

Q. Method of Instruction:

Lectures, problem sessions and assignments

R. Course Evaluation:

Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on some of the following:

1.	Weekly tests	{ 0 - 40% }
2.	Midterm tests	{ 20 - 70%]
3.	Assignments	{ 0 - 15% }
4.	Attendance	{0-5%}
5.	Class participation	{0-5%}
6.	Final Examination	{ 30% }