_				Page 1 01 4
Division: ACADE	MIC	_ DATE:	September 1, 1998	
3: Department: <u>SCIENCE</u>	& MATHEMATICS	New C	ourse:	
			on of Course ation form: <u>X</u>	
		DATE	D: <u>March, 1993</u>	
C: MATH 220	D:	CALCULUS II	E:	3
Subject & Course No.	Desc	riptive Title	Ser	mester Credit
F: Calendar Description			Summary of Revisions: Se	ept. 1998
Math 220 is an introduction to concept of the integral and it techniques of integration, im numbers, Taylor series, pola separable differential equation. This course is taught using a	s applications. Other top proper integrals, sequen ar coordinates, parametri ons.	oics include ces and series of	Redistribution of topics bef 220 . Items F, N, M, O, P	tween Math 120 and
G: Type of Instruction: Hours Per Week ecture Hrs. oratory Hrs. seminar Hrs.		H: Course Pre-requisites: Math 120		
			I: Course Co-requisites: N	one
Clinical Experience Hrs. Field Experience Hrs. Practicum Hrs. Shop Hrs. Studio Hrs. Student Directed Learning Hrs. Other Hrs.	Hrs. Hrs. Hrs.		J: Course for which this co is a pre-requisite: Math 321, Math 421	urse
	Hrs.		K: Maximum Class Size: 35	
	HOURS		M: Transfer Credit: Requested X Granted	
L: College Credit Transfer College Credit Non-Transf	<u>X</u> er		Specify Course Equivalents Unassigned Credit as Appro U.B.C. Math 101 S.F.U. Math 152 U. Vic. Math 101 (1.5 of OTHER:	opriate:
alabour)		JA-RD	pet.
COURSE DESIGNER(S)	ill-		VICE-PRESIDENT INSTR	RUCTION
DEAN			REGISTRAR	0

N: Textbooks and materials to be purchased by students (Use Bibliographic Form):

Stewart, Calculus: Early Transcendentals, 3rd Edition, Brooks/Cole

A graphing calculator is also required.

O. Course Objectives:

General comments:

Math 220 is a second course in calculus. The four-semester sequence of Math 120, 220, 321, and 421 provides the foundation for continued studies in science, engineering, computer science, and a major in mathematics.

Specific objectives:

At the conclusion of this course, the student should be able to:

- compute finite Riemann sums and use to estimate area
- form limits of Riemann sums and write the corresponding definite integral
- recognize and apply the Fundamental Theorem of Calculus
- evaluate integrals involving exponential functions to any base
- evaluate integrals of reciprocal functions
- evaluate integrals involving basic trigonometric functions and integrals whose solutions require inverse trigonometric functions
- be able to choose an appropriate method and apply the following techniques to finding antiderivatives and evaluating definite integrals:
 - a) integration by parts
 - b) trigonometric and rationalizing substitution
 - c) completing the square for integrals involving quadratic expressions
 - d) partial fractions
 - e) integrals of products of trigonometric functions
- apply integration to problems involving areas, volumes, arc length, work, velocity and acceleration
- be able to determine the convergence or divergence of improper integrals by comparison test

- determine if a given sequence converges or diverges
- determine if a sequence is bounded and/or monotonic
- determine the sum of a geometric series
- be able to choose an appropriate test and determine series convergence/divergence using:
 - a) integral test
 - b) simple comparison test
 - c) limit comparison test
 - d) ratio and root tests
 - e) alternating series test
- distinguish and apply concepts of absolute and conditional convergence of a series
- determine the radius and interval of convergence of a power series
- approximate a differentiable function by a Taylor polynomial, determine the remainder term, and compute the error in using the approximation
- find a Taylor or Maclaurin series representing specified functions by:
 - a) "direct" computation
 - b) means of substitution, differentiation or integration of related power series
- find the area of a region bounded by the graph of a polar equation or parametric equations
- find the lengths of curves in polar coordinates or in parametric form
- solve first order linear differential equations by method of separation of variable; apply to growth and decay problems

P. Course Content

- 1. Introduction to the Integral
 - sigma notation
 - Riemann sums
 - the definite integral
 - the Fundamental Theorem of Calculus
 - antiderivatives; elementary substitutions
 - applications to area under and between curves, volume and work
- 2. Techniques of Integration
 - parts
 - trigonometric substitution
 - trigonometric integrals (products and powers)
 - partial fractions (linear factors and distinct quadratic factors)
 - rationalizing substitutions
 - improper integrals

3. Applications of Integration

- areas between curves
- volumes by slicing and cylindrical shells
- work
- separable differential equations
- arc length

4. Infinite Series

- sequences
- sum of a geometric series
- absolute and conditional convergence
- comparison tests
- alternating series
- ratio and root test
- integral test
- power series
- differentiation and integration of power series
- Taylor and Maclaurin series
- polynomial approximations; Taylor polynomials

5. Parametric Equations and Polar Coordinates

- areas and arc lengths of curves in polar coordinates
- areas and arc lengths of functions in parametric form

6. Optional Topics (included at the discretion of the instructor)

- tables of integrals
- approximation of integrals by numerical techniques
- Newton's law of cooling, Newton's law when force is proportional to velocity, and logistics curves
- a heuristic "proof" of the Fundamental Theorem of Calculus
- the notion of the logarithm defined as an integral
- further applications of Riemann sums and integration
- binomial series

Q. Method of Instruction

Lectures, problem sessions and assignments.

R. Course Evaluation

Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on the following criteria:

1.	Weekly quizzes	0-40%
2.	Tests	20-70%
3.	Assignments	0-15%
4.	Attendance	0-5%
5.	Class participation	0-5%
6.	Final examination	30%