=y

Douglas College Course Information Page 1 of 4

. A: Division Instructional Date June 18, 1997
B: Department Pure and Applied Science and Technology New Course
Revision of Course X
Dated  Jan7, 1991

C: CMPT-110 D: Introduction to Computing Science Using C++ E: 4

Course Number Descriptive Title Credits
F: Calendar Description Summary of Revisions

This course introduces the science of computing. Emphasis is
placed on the analysis of problems, the design of algorithms, and the | Sections revised:
abstraction of control and data in computer implementations of the K

design. Initially structured top-down design and procedural
programming is used followed by an introduction to recursive
functional programming then an introduction to Object Oriented
Design (OOD) and Object Oriented Programming (OOP). C++ is
used as the implementation language.

G: Type of Instruction H: Course Prerequisites:
CMPT-100 and
Lecture —2x2hrs/week MATH-110
Lab. -1 x2 hrs/biweekly
Seminar I: Course Corequisites
. Clinical Experience None
Practi
Shaoc eum . - | J: Course for which this
S ; course is a prerequisite
tudio , CMPT-210, CMPT-220
Student Directed Learning _5 hrs/week (approx.)
Other K: Maximum Class Size
34
Total 10 hrs/week
L: College Credit M: Transfer Credit
Transfer X D EH  TF2 Ve Requested
Wk}\[}) Granted X
' Course Equivalents
JuL-31997 UB.C. CPSC(3)
S.F.U. CMPT101
Registrar's OfTice - N.W, Vic. CSC110
— Ry: ... / AOthers ih\transfer r guide

ourse Designer

> haend LI

Dean Registrar O

© Douglas College



Jamie Gunn
© Douglas College


Page 2 of 4

N: Textbook and Materials to be Purchased by Students

¢ Dale N., Weems C., Headington M., Programming and Problem Solving with C++,
D. C. Heath and Company

e Portfolio for Programming Assignments
e Two 31/2” high density diskettes

O: Course Objectives

The student should be able to:

¢ analyze problem specifications

e form data and control abstractions

* design computer algorithms using either a structured top down design methodology or Object
Oriented Design

¢ implement, in a widely acceptable style, algorithms in C++ using standard programming
methodologies

e document a project

The student should understand the concepts of:
e generality through abstractions
¢ maintainability, reusability and extensibility through modularity




Page 3 of 4

P: Course Content

1

Introduction and Review (syntax of C++)

1.1 Program Structure

1.2 Primitive data types and expressions

1.3 Control Structures

14 Functions and parameter passing

1.5 Arrays

1.6 Top-down design review and specs. for assignment #1: procedural programming with
emphasis on control structures, procedures, and arrays

Abstractions (implementations are not considered)

2.1 Strings

22 Collections
2.2.1 Lists
222  Sets
2.2.3 Stacks

Implementing Abstractions

3.1 C++ Strings
32 Introduction to pointers (domain of arrays and parameter passing)
33 C++ records (struct)
34 Structured design issues and specs. for assignment #2: procedural programming with
emphasis on: cohesion and coupling and using more complicated static data structures
35 Design of set primitives
3.6 Recursion
3.6.1 Numerical examples: factorial, Fibonacci, ...
3.6.2 Examples from symbolic (LISP-like) expressions (SExpressions)
3.7~ Discussion and specs for assignment #3: functional programming using an existing
module for SExpressions with emphasis on recursion and list processing
Encapsulation, Instantiation, and OOP
4.1 Structure (syntax and semantics)
4.2 Examples
4.2.1 Sets implementation and use
4.2.2 Stacks implementation and use
4.3 Specs for assignment #4: OOP
OOD and Separate Compilations
5.1 O0D
5.2 Examples
5.3 Specs for assignment #5: OOP
5.4 Introduction to inheritance
5.4.1 Examples




Page 4 of 4

Q: Method of Instruction
There are three components to the course: lectures, labs., and assignments.

The lecture is used to introduce new material; usually via a sequence of theoretical concepts, practical
considerations (usually language dependent), and one or more example case studies. The book is to be
used as an additional source of problems and examples.

The two hour biweekly lab. is exclusively used to evaluate the student’s practical programming ability.
They are marked mostly on results; i.e. correctness of the algorithm.

Assignments are the most important learning vehicle and are done on the student’s own time. They are
marked according to program design, correctness and efficiency of the algorithms, coding style, and
completeness of the documentation.

R: Evaluation

The final grade will be calculated from a particular distribution from the range below. The exact
distribution will be given to the student on the first day of classes along with the course outline and
necessary policies.

Distribution Range:
6 labs. = 15% - 25%
2tests @ 15% -20% each = 30% - 40%
1 exam = 20% - 30%
5 assignments = 20% - 35%
Example Distribution:
6 labs. = 15%
test #1 = 15%
test #2 = 20%
assignments = 25%
exam = 25%
Total = 100%

© Douglas College. All Rights Reserved.



Jamie Gunn
© Douglas College.  All Rights Reserved.




