Douglas College wordmark
Facebook logo Twitter logo Instagram logo Snapchat logo YouTube logo Wordpress logo

Registration for the Fall 2019 semester begins June 25.  Watch your email for more details.

back to search

General Microbiology

Course Code: BIOL 2400
Faculty: Science & Technology
Department: Biology
Credits: 5.0
Semester: 15 weeks
Learning Format: Lecture, Lab
Typically Offered: TBD. Contact Department Chair for more info.
course overview

A survey of the biology of microorganisms with an emphasis on bacteria. Topics include prokaryotic diversity, bacterial cell structure and metabolism, microbial growth and reproduction, microbial genetics and ecology, introductory virology and immunology, epidemiology and public health, and selected topics in applied microbiology. Laboratory activities introduce a wide variety of techniques in microbiology and immunology.

Course Content

  1. Introduction
    • Introduction to microorganisms
    • Historical overview of microbiology
    • Introduction to microscopy
    • Prokaryotic and eukaryotic microorganisms
    • Introduction to bacteria
  2. Cellular Biochemistry
    • Chemical components of cells
    • Bacterial cell structure
  3. Prokaryotic Diversity
    • Principles of classification
    • Phylogeny of bacteria
  4. Bacterial Metabolism
    • Principles of nutrition
    • Major catabolic pathways
    • Regulation of metabolism
  5. Microbial Growth and Reproduction
    • Bacterial cell division
    • Growth of bacterial populations
    • Control of bacterial growth
  6. Microbial Genetics
    • Bacterial genomes
    • Gene expression and regulation
    • Transformation and recombination
    • Drug resistance
  7. Introduction to Virology
    • Taxonomy of viruses
    • Viral replication
    • Bacteriophage versus animal virus replication
    • Viruses and cancer
    • Viroids and prions
  8. Immunology
    • Innate and acquired immunity
    • Humoral and cell-mediated responses
    • Immunization
  9. Microbial Ecology
    • Populations and communities
    • Microbial habitats
    • Symbiosis
  10. Epidemiology and Public Health
    • Transmission and infection
    • Disease by transmission mechanisms
    • Disease management
  11. Topics in Applied Microbiology
    • Examples: food microbiology, industrial microbiology, forensic microbiology, environmental bioremediation, genetic engineering
  12. Laboratory Topics
    • Basic Techniques in Microbiology
      • Laboratory operations and safety
      • Laboratory reporting techniques
      • Microscopy
    • Bacteria: Transfer, culture and isolation techniques
      • Aseptic techniques
        • Inoculation of media and plates
        • Tube transfers
        • Streak plate and spread plate techniques
    • Colony and Cellular Morphology
      • Agar plate colonial characteristic and agar slant growth
      • Individual cell characteristics (coccus, bacillus and spirillum microscopic recognition)
    • Differential Staining
      • Negative staining
      • Gram staining
      • Endospore staining
    • Bacterial Growth
      • Serial dilution
      • Growth rate determination (direct/plate counts)
      • MPN (most probable number) analysis
    • Antibody-Antigen reactions
      • ELISA (enzyme-linked immunosorbent assay)
    • Control of Microbial Growth
      • Disc diffusion assays
      • Antiseptics, disinfectants, and antibiotics
      • Probiotics
    • Practical Case Study
      • Characterization and possible identification of a microorganism using the techniques learned throughout the laboratories, as well as the information given in the theory lectures
      • Identification of typical species present in various samples (e.g., water, food, etc.)
    • Other laboratory topics may also include:
      • Bacterial transformation
      • Bacteriophages
      • Macrophages and phagocytosis

Methods of Instruction

This course involves four hours of lecture per week and three hours of laboratory work.  The content of lectures is integrated with laboratory experiments, and readings in the textbook and scientific journal articles.

Means of Assessment

Evaluation will be carried out in accordance with Douglas College policy.  The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester.  Evaluation will be based on the following:

Class tests and assignments

15-20%
Project 0-15%
Laboratory 20-30%
Exams  
-Term exam(s) 15-30%
-Final exam 30-35%
Total 100%

Learning Outcomes

Upon completion of this course, students will

  1. Summarize the range of prokaryotic and eukaryotic organisms that are considered to be microorganisms and discuss the historical context of microbiological science.
  2. Identify the chemical components and cellular structure of bacterial cells.
  3. Examine the principles of classification as they are applied to prokaryotic organisms and be able to describe the classification of bacteria in the context of phylogeny.
  4. Indicate the principles of bacterial nutrition and be able to compare the roles of catabolic and anabolic pathways in bacterial metabolism as well as mechanisms of regulation of metabolism.
  5. Illustrate the process of bacterial cell division and relate it to the growth of bacterial populations and the control of bacterial growth.
  6. Explain the structure and function of bacterial genomes including mechanisms of gene expression and regulation.
  7. Compare and contrast mechanisms of genetic recombination in bacteria (e.g. transformation, transduction, conjugation, etc.) and the evolution of antibiotic resistance in bacterial populations.
  8. Summarize the taxonomy of viruses, virus replication, the role of viruses in cancer, and the nature and importance of virus-like organisms like viroids and prions.
  9. Differentiate between innate and acquired immunity to disease in humans and how they are affected by humoral and cell-mediated responses.
  10. Describe the concept of immunization.
  11. Categorize the range of habitats in which bacteria are found, the dynamics of bacterial populations, the role of bacteria in biological communities, and the range of symbiotic relationships involving bacteria (e.g. mutualism, parasitism, etc.).
  12. Assess the modes of transmission and mechanisms of infection by human bacterial diseases and strategies for management of transmission and infection in the context of public health.
  13. Analyze the importance and use of microorganisms in production of human food and/or human industrial activity and/or forensic investigations and/or bioremediation of contaminated industrial sites and/or other human applications.
  14. Compose a group project (presentations and/or poster) on a specific topic in Microbiology and evaluate other projects.
  15. Demonstrate a wide variety of microbiological laboratory techniques including transfer, culture and isolation techniques, characterization of colony and cell morphology, differential staining, determination of bacterial growth rates, and methods associated with bacterial transformation, bacteriophages, macrophages & phagocytosis, antibody-antigen reactions, and identification of unknown microorganisms.

course prerequisites

(BIOL 1110 and 1210) or BIOL 1310

and CHEM 1110

BIOL 2321 recommended

Corequisites

Courses listed here must be completed either prior to or simultaneously with this course:

  • No corequisite courses

Equivalencies

Courses listed here are equivalent to this course and cannot be taken for further credit:

  • No equivalency courses

curriculum guidelines

Course Guidelines for previous years are viewable by selecting the version desired. If you took this course and do not see a listing for the starting semester/year of the course, consider the previous version as the applicable version.

course schedule and availability
course transferability

Below shows how this course and its credits transfer within the BC transfer system. 

A course is considered university-transferable (UT) if it transfers to at least one of the five research universities in British Columbia: University of British Columbia; University of British Columbia-Okanagan; Simon Fraser University; University of Victoria; and the University of Northern British Columbia.

For more information on transfer visit the BC Transfer Guide and BCCAT websites.

assessments

If your course prerequisites indicate that you need an assessment, please see our Assessment page for more information.